
A novel approach to simulate cellular neural networks (CNN) is presented in this paper. The approach, time-multiplexing simulation, is prompted by the need to simulate hardware models and test hardware implementations of CNN. For practical applications, due to hardware limitations, it is impossible to have a one-to-one mapping between the CNN hardware processors and all the pixels of the image. This simulator provides a solution by processing the input image block by block, with the number of pixels in a block being the same as the number of CNN processors in the hardware. The algorithm for implementing this simulator is presented along with popular numerical integration algorithms. Some simulation results and comparisons are also presented.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
