Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Communications
Article . 2014 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Robust Precoder Design Based on Channel Statistics for MIMO-OFDM Systems with Insufficient Cyclic Prefix

Authors: Yuansheng Jin; Xiang-Gen Xia 0001;

A Robust Precoder Design Based on Channel Statistics for MIMO-OFDM Systems with Insufficient Cyclic Prefix

Abstract

In this paper, we study the precoder design problem for MIMO-OFDM systems with insufficient cyclic prefix (CP) using statistical channel state information (CSI) at the transmitter. In our previously proposed channel independent precoding scheme, an interference nulling based precoding structure is studied, which can assist to either cancel interblock interference (IBI) or separate the subspace occupied by IBI from the subspace used for information symbols. In this work, we consider a robust precoder design which combines statistical CSI at the transmitter and the interference nulling based precoding structure to gain a better performance compared to the channel independent precoding scheme. Statistical channel state information at the transmitter in the form of covariance matrix of the MIMO-OFDM channel matrix is utilized to perform the robust precoding. The design criterion for the precoder design is to minimize the maximum average mean squared error (MSE) of all the transmitted symbols during one OFDM block interval. To achieve this goal, the precoder design exhibits a similar procedure to the optimized design framework for MIMO transceivers for either perfect or statistical CSI with no interference effect, but with a distinct equivalent channel. Since the average MSEs are set equal using this precoder, the BER performance is better than our previously proposed channel independent precoder and the simulation validates this result.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!