Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Research on OpenMP model of the parallel programming technology for homogeneous multicore DSP

Authors: Minjie Wu; Weiwei Wu; Ning Tai; Hongyu Zhao; Jiawu Fan; Naichang Yuan;

Research on OpenMP model of the parallel programming technology for homogeneous multicore DSP

Abstract

As application complexity continues to grow, using multicore processors has been proved to be an effective methodology to meet the ever-increasing processing demand across the industry association. The Master/Slave model, the Data Flow model and the OpenMP model are the three dominant models for parallel programming. In this paper, the first two models are briefly discussed while the OpenMP model is focused. Some factors (e.g. the number of threads, the scheduling strategy, the load balance, etc.) that affecting the execution performance of OpenMP programs were also studied in this paper. This paper presents a method of taking advantage of the OpenMP model to realize the image edge detection within the platform of TMS320C6678 DSP. The experimental results show that the OpenMP model has a better advantage on scalability and flexibility compared to the Master/Slave model and the Data Flow model. The best performance can be obtained when the number of threads is equal to the number of cores which are available within the platform. Under the circumstance of using the eight cores of TMS320C6678 DSP simultaneously, an image of 1024×768 pixels just needs 6.192ms to complete the edge detection. This result is impressive compared to the Master/Slave model's which saves 32.10% in time. Further more, if we use 1 to 8 cores, the respective execution time reduces resulting in the speedup approximately conforms to the Gustafson's law. In the case of 8 cores, the speedup reaches 7.233.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!