Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/ipdps....
Article . 2017 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

General Purpose Task-Dependence Management Hardware for Task-Based Dataflow Programming Models

Authors: Xubin Tan; Jaume Bosch; Miquel Vidal; Carlos Álvarez 0001; Daniel Jiménez-González; Eduard Ayguadé; Mateo Valero;

General Purpose Task-Dependence Management Hardware for Task-Based Dataflow Programming Models

Abstract

Task-based programming models such as OpenMP, IntelTBB and OmpSs offer the possibility of expressing dependences among tasks to drive their execution at runtime. Managing these dependences introduces noticeable overheads when targeting fine-grained tasks, diminishing the potential speedups or even introducing performance losses. To overcome this drawback, we present a general purpose hardware accelerator, Picos++, to manage the inter-task dependences efficiently in both time and energy. Our design also includes a novel nested task support. To this end, a new hardware/software co-design is presented to overcome the fact that nested tasks with dependences could result in system deadlocks due to the limited amount of resources in hardware task dependence managers. In this paper we describe a detailed implementation of this design and evaluate a parallel task-based programming model using Picos++ in a Linux embedded system with two ARM Cortex-A9 and a FPGA. The scalability and energy consumption of the real system implemented have been studied and compared against a software runtime. Even in a system limited to 2 threads, using Picos++ results in more than 1.8x speedup and 40% of energy savings in the most demanding parallelizations of real benchmarks. As a matter of fact, a hardware task dependence manager should be able to achieve much higher speedup and provide more energy savings with more threads.

This work is supported by the Spanish Government (projects SEV-2015-0493 and TIN2015-65316-P), by the Generalitat de Catalunya (2014-SGR-1051 and 2014-SGR- 1272), by the European Research Council (RoMoL GA 321253) and by the “Port of OmpSs to the Android platform and Hardware support for Nanos++ runtime” Project Cooperation Agreement with LG Electronics. We also thank the Xilinx University Program.

Peer Reviewed

Country
Spain
Keywords

Instruction sets, Hardware, Runtime, Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors::Arquitectures paral·leles, Programming, Parallel processing, Parallel programming (Computer science), Programació en paral·lel (Informàtica), :Informàtica::Arquitectura de computadors::Arquitectures paral·leles [Àrees temàtiques de la UPC], Discrete cosine transforms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 35
  • 35
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
7
Average
Top 10%
Average
35
Green