Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Parallel and Distributed Systems
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Parallel Algorithm Template for Updating Single-Source Shortest Paths in Large-Scale Dynamic Networks

Authors: Arindam Khanda; Sriram Srinivasan 0001; Sanjukta Bhowmick; Boyana Norris; Sajal K. Das 0001;

A Parallel Algorithm Template for Updating Single-Source Shortest Paths in Large-Scale Dynamic Networks

Abstract

The Single Source Shortest Path (SSSP) problem is a classic graph theory problem that arises frequently in various practical scenarios; hence, many parallel algorithms have been developed to solve it. However, these algorithms operate on static graphs, whereas many real-world problems are best modeled as dynamic networks, where the structure of the network changes with time. This gap between the dynamic graph modeling and the assumed static graph model in the conventional SSSP algorithms motivates this work. We present a novel parallel algorithmic framework for updating the SSSP in large-scale dynamic networks and implement it on the shared-memory and GPU platforms. The basic idea is to identify the portion of the network affected by the changes and update the information in a rooted tree data structure that stores the edges of the network that are most relevant to the analysis. Extensive experimental evaluations on real-world and synthetic networks demonstrate that our proposed parallel updating algorithm is scalable and, in most cases, requires significantly less execution time than the state-of-the-art recomputing-from-scratch algorithms.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!