Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Artificial Intellige...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Artificial Intelligence in Agriculture
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic body condition scoring system for dairy cows in group state based on improved YOLOv5 and video analysis

Authors: Jingwen Li; Pengbo Zeng; Shuai Yue; Zhiyang Zheng; Lifeng Qin; Huaibo Song;

Automatic body condition scoring system for dairy cows in group state based on improved YOLOv5 and video analysis

Abstract

This study proposes an automated scoring system for cow body condition using improved YOLOv5 to assess the body condition distribution of herd cows, which significantly impacts herd productivity and feeding management. A dataset was created by capturing images of the cow's hindquarters using an image sensor at the entrance of the milking hall. This system enhances feature extraction ability by introducing dual path networks and convolutional block attention modules and improves efficiency by replacing some modules from the standard YOLOv5s with deep separable convolution to reduce parameters. Furthermore, the system employs an automatic detection and segmentation algorithm to achieve individual cow segmentation and body condition acquisition in the video. Subsequently, the system computes the body condition distribution of cows in a group state. The experimental findings demonstrate that the proposed model outperforms the original YOLOv5 network with higher accuracy and fewer computations and parameters. The precision, recall, and mean average precision of the model are 94.3 %, 92.5 %, and 91.8 %, respectively. The algorithm achieved an overall detection rate of 94.2 % for individual cow segmentation and body condition acquisition in the video, with a body condition scoring accuracy of 92.5 % among accurately detected cows and an overall body condition scoring accuracy of 87.1 % across the 10 video tests.

Keywords

YOLOv5, S, Dairy cows, Agriculture, Segmentation algorithm, BCS, Distribution statistics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold