Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/c069b...
Article . 2024
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

YOLOv8-seg-CP: a lightweight instance segmentation algorithm for chip pad based on improved YOLOv8-seg model

Authors: Zongjian Zhang; Yanli Zou; Yufei Tan; Chiyang Zhou;

YOLOv8-seg-CP: a lightweight instance segmentation algorithm for chip pad based on improved YOLOv8-seg model

Abstract

Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production.

Related Organizations
Keywords

Artificial intelligence, YOLOv8-seg, Science, Q, Chip pad, R, Medicine, Deep learning, Machine vision, Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
hybrid