Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MATEC Web of Confere...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MATEC Web of Conferences
Article . 2016 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MATEC Web of Conferences
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MATEC Web of Conferences
Article . 2016
Data sources: DOAJ
https://dx.doi.org/10.60692/dr...
Other literature type . 2016
Data sources: Datacite
https://dx.doi.org/10.60692/s2...
Other literature type . 2016
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chicken eggshell as biosorbent: Artificial intelligence as promising approach in optimizing study

قشر بيض الدجاج كممتص حيوي: الذكاء الاصطناعي كنهج واعد في تحسين الدراسة
Authors: Peck Loo Kiew; Chun Kit Ang; Khang Wei Tan; Shu Xin Yap;

Chicken eggshell as biosorbent: Artificial intelligence as promising approach in optimizing study

Abstract

La méthodologie de surface de réponse (RSM) est l'approche la plus populaire pour l'étude d'optimisation dans divers processus biochimiques de nos jours. Le réseau neuronal artificiel (RNA) est apparu comme l'une des méthodes les plus efficaces de modélisation et d'optimisation empiriques, en particulier pour les systèmes non linéaires. Dans cette étude, la capacité d'estimation des modèles RSM et ANN a été comparée dans l'élimination du cuivre de la solution aqueuse. Les expériences ont été réalisées sur la base d'une conception composite centrale (CCD) à 3 niveaux et 4 variables. Les résultats du RSM ont révélé que la relation entre la réponse et la variable indépendante pouvait être représentée par le modèle polynomial quadratique. Dans le développement du modèle ANN, la configuration optimale du modèle s'est avérée être 4-10-1. Les réponses estimées des deux modèles ont été comparées aux réponses déterminées expérimentalement pour déterminer les capacités prédictives des deux techniques. La comparaison de deux méthodologies a montré que le modèle ANN était plus précis et présentait une meilleure capacité de généralisation que le RSM, indiquant ainsi une nette supériorité par rapport à ce dernier pour capturer le comportement non linéaire du processus d'adsorption utilisant la coquille d'œuf de poule comme biosorbant.

La Metodología de Superficie de Respuesta (RSM) es el enfoque más popular para el estudio de optimización en diversos procesos bioquímicos en la actualidad. La Red Neuronal Artificial (ANN) se ha convertido en uno de los métodos más eficientes en el modelado empírico y la optimización, particularmente para sistemas no lineales. En este estudio, se comparó la capacidad de estimación de los modelos RSM y ANN en la eliminación de cobre de la solución acuosa. Los experimentos se llevaron a cabo en base a un diseño compuesto central (CCD) de 3 niveles y 4 variables. Los resultados de RSM revelaron que la relación entre la respuesta y la variable independiente podría representarse mediante el modelo polinómico cuadrático. En el desarrollo del modelo ANN, se encontró que la configuración óptima del modelo era 4-10-1. Las respuestas estimadas de ambos modelos se compararon con las respuestas determinadas experimentalmente para determinar las capacidades predictivas de ambas técnicas. La comparación de dos metodologías mostró que el modelo ANN era más preciso y exhibía una mejor capacidad de generalización que RSM, por lo que indicó una clara superioridad que este último en la captura del comportamiento no lineal del proceso de adsorción utilizando cáscara de huevo de gallina como biosorbente.

Response Surface Methodology (RSM) is the most popular approach for optimization study in various biochemical processes nowadays. Artificial Neural Network (ANN) has emerged as one of the most efficient methods in empirical modeling and optimization, particularly for non-linear systems. In this study, the estimation capability of RSM and ANN models was compared in copper removal from aqueous solution. The experiments were carried out based on a 3-level and 4-variable Central Composite Design (CCD). The RSM results revealed that the relationship between the response and independent variable could be represented by the quadratic polynomial model. In the development of ANN model, the optimal configuration of the model was found to be 4-10-1. Estimated responses from both models were compared with the experimentally determined responses to determine predictive capabilities of both techniques. Comparison of two methodologies showed that the ANN model was more accurate and exhibited better generalization capability than RSM, thus indicated a clear superiority than the latter in capturing the non-linear behaviour of the adsorption process using chicken eggshell as biosorbent.

منهجية سطح الاستجابة (RSM) هي النهج الأكثر شيوعًا لدراسة التحسين في مختلف العمليات الكيميائية الحيوية في الوقت الحاضر. برزت الشبكة العصبية الاصطناعية (ANN) كواحدة من أكثر الطرق فعالية في النمذجة التجريبية والتحسين، خاصة بالنسبة للأنظمة غير الخطية. في هذه الدراسة، تمت مقارنة قدرة التقدير لنماذج RSM و ANN في إزالة النحاس من المحلول المائي. تم إجراء التجارب بناءً على تصميم مركب مركزي من 3 مستويات و 4 متغيرات (CCD). كشفت نتائج RSM أن العلاقة بين الاستجابة والمتغير المستقل يمكن تمثيلها بالنموذج متعدد الحدود التربيعي. في تطوير نموذج ANN، تم العثور على التكوين الأمثل للنموذج ليكون 4-10-1. تمت مقارنة الاستجابات المقدرة من كلا النموذجين مع الاستجابات المحددة تجريبياً لتحديد القدرات التنبؤية لكلا التقنيتين. أظهرت مقارنة بين منهجيتين أن نموذج ANN كان أكثر دقة وأظهر قدرة تعميم أفضل من RSM، وبالتالي أشار إلى تفوق واضح من الأخير في التقاط السلوك غير الخطي لعملية الامتزاز باستخدام قشر بيض الدجاج كممتص حيوي.

Related Organizations
Keywords

Design for Manufacture and Assembly in Manufacturing, Optimization, Artificial neural network, Artificial intelligence, Generalization, FOS: Mechanical engineering, Polynomial, Mathematical analysis, Industrial and Manufacturing Engineering, Central composite design, Engineering, Response surface methodology, Machine learning, FOS: Mathematics, Biology, Polynomial and rational function modeling, Mechanical Engineering, Mathematical optimization, Statistics, Engineering (General). Civil engineering (General), Computer science, Biological system, Physical Sciences, Optimization of Injection Molding Processes, TA1-2040, Design of experiments, Mathematics, Simulation, Empirical modelling

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Published in a Diamond OA journal