Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Dynamic Attack on Classical Ciphers Using an Attention-Based LSTM Encoder-Decoder Model

Authors: Ezat Ahmadzadeh; Hyunil Kim; Ongee Jeong; Inkyu Moon;

A Novel Dynamic Attack on Classical Ciphers Using an Attention-Based LSTM Encoder-Decoder Model

Abstract

Information security has become an intrinsic part of data communication. Cryptanalysis using deep learning–based methods to identify weaknesses in ciphers has not been thoroughly studied. Recently, long short-term memory (LSTM) networks have shown promising performance in sequential data processing by modeling the dependencies and data dynamics. Given an encrypted ciphertext sequence and corresponding plaintext, by taking advantage of sequential processing, LSTM can adaptively discover the decryption function regardless of the complexity level, which substantially outperforms traditional methods. However, a lengthy ciphertext sequence causes LSTM to lose important information along the sequence, leading to a decrease in network performance. To tackle these problems, we propose adding an attention mechanism to enhance the LSTM sequential processing power. This paper presents a novel, dynamic way to attack classical ciphers by using an attention-based LSTM encoder-decoder for different ciphertext sequence lengths. The proposed approach takes in a sequence of ciphertext and outputs a sequence of plaintext. The effectiveness and flexibility of the proposed model were evaluated on different classical ciphers. We got close to 100% accuracy in breaking all types of classical ciphers in character-level and word-level attacks. We empirically provide further insights into our results on two datasets with short and long ciphertext lengths. In addition, we provide a performance comparison of the proposed method against state-of-the-art methods. The proposed approach has the potential to attack modern ciphers. To the best of our knowledge, this is the first time an attention-based LSTM encoder-decoder has been applied to attack classical ciphers.

Keywords

Performance comparison, Decoding, Security of data, Data-communication, Signal encoding, State-of-the-art methods, Sequence lengths, Cryptanalysis, Long short-term memory, Complexity levels, Computer architecture, Attention mechanisms, Ciphers, Character level, Logic gates, Deep learning, Sequential processing, 620, 004, TK1-9971, Recurrent neural networks, attention-based LSTM encoder-decoder, Cryptography, Feature extraction, recurrent neural network, Electrical engineering. Electronics. Nuclear engineering, classical ciphers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
gold