Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Neuroscience
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Neuroscience
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

White matter microstructure of the neural emotion regulation circuitry in mild traumatic brain injury

Authors: Harm Jan van der Horn; Namrata R. Mangina; Sandra E. Rakers; Jelmer G. Kok; Marieke E. Timmerman; Alexander Leemans; Jacoba M. Spikman; +1 Authors

White matter microstructure of the neural emotion regulation circuitry in mild traumatic brain injury

Abstract

AbstractEmotion regulation is related to recovery after mild traumatic brain injury (mTBI). This longitudinal tractography study examined white matter tracts subserving emotion regulation across the spectrum of mTBI, with a focus on persistent symptoms. Four groups were examined: (a) symptomatic (n = 33) and (b) asymptomatic (n = 20) patients with uncomplicated mTBI (i.e., no lesions on computed tomography [CT]), (c) patients with CT‐lesions in the frontal areas (n = 14), and (d) healthy controls (HC) (n = 20). Diffusion and conventional MRI were performed approximately 1‐ and 3‐months post‐injury. Whole‐brain deterministic tractography followed by region of interest analyses was used to identify forceps minor (FM), uncinate fasciculus (UF), and cingulum bundle as tracts of interest. An adjusted version of the ExploreDTI Atlas Based Tractography method was used to obtain reliable tracts for every subject. Mean fractional anisotropy (FA), mean, radial and axial diffusivity (MD, RD, AD), and number of streamlines were studied per tract. Linear mixed models showed lower FA, and higher MD, and RD of the right UF in asymptomatic patients with uncomplicated mTBI relative to symptomatic patients and HC. Diffusion alterations were most pronounced in the group with frontal lesions on CT, particularly in the FM and UF; these effects increased over time. Within the group of patients with uncomplicated mTBI, there were no associations of diffusion measures with the number of symptoms nor with lesions on conventional MRI. In conclusion, mTBI can cause microstructural changes in emotion regulation tracts, however, no explanation was found for the presence of symptoms.

Keywords

White Matter/diagnostic imaging, General Neuroscience, Research Support, Non-U.S. Gov't, tractography, Brain, Brain Concussion/diagnostic imaging, Brain/diagnostic imaging, White Matter, Emotional Regulation, diffusion MRI, Diffusion Tensor Imaging, connectivity, Clinical and Translational Neuroscience, Journal Article, concussion, symptoms, Anisotropy, Humans, Brain Concussion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
hybrid