Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and development of high-accuracy machine for wire bending

Authors: Mustafa, Faiz F.; Hussein, O.; Fakhri, Osamah F; Sabri, Ahmed H;

Design and development of high-accuracy machine for wire bending

Abstract

The use of a bending machine acquired a high level of importance as a consequence of increasing the level of the industry. This paper aims to develop a more accurate and precise bending machine. The proposed bending machine has achieved brilliant output products, in which three main manufacturing parameters have been examined for the production of an equilateral triangle, which are flange length, bending angle and bending radius. The main point depends on the proposed algorithm, which has been developed based on separating the process, in which the central controller is responsible mainly for controlling the sub-controller, where the sub-controllers are programmed using PID to control the entire mechanisms of feeding and bending separately and ensure that the outcomes of these mechanisms are compatible with the input data from the central controller. Ten different dimensions of an equilateral triangle design sample with ten tries for each dimension (variable flange length, fixed bending angle equals to 60 degrees and bending radius equals to 3 mm) have been selected being produced using the bending machine, and the products have been formed two times. Firstly, using the proposed bending machine, in which the proposed algorithm is applied. Secondly, using the bending machine implemented without applying the proposed algorithm. The results have been compared in terms of error rates with respect to the standard design of products designed using CAD/CAM application. An enhancement has been recorded in terms of product accuracy and precision for the parameters of flange length, bending angle and bending radius. The overall accuracy level reaches up to 98.85228 % for a product manufactured using the proposed machine by applying the proposed algorithm compared with a product made with the machine designed without the proposed algorithm

Related Organizations
Keywords

bending machine; accuracy; precision; equilateral triangle; flange length; bending angle; bending radius; proposed algorithm; CAD/CAM application, UDC 681, згинальний верстат; точність; прецизійність; рівносторонній трикутник; довжина фланця; кут вигину; радіус вигину; запропонований алгоритм; додаток CAD/CAM, гибочный станок; точность; прецизионность; равносторонний треугольник; длина фланца; угол изгиба; радиус изгиба; предложенный алгоритм; приложение CAD/CAM

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 9
    download downloads 10
  • 9
    views
    10
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
9
10
gold