
handle: 10023/32564
Abstract Planktonic foraminifera are key contributors to the oceanic carbon cycle. In pelagic environments, carbonate production by planktonic biomineralizers regulates ocean-atmosphere carbon dioxide exchange and exports surface carbon to the deep ocean. Here we compare shell traits of three planktonic foraminifera species from the central Atlantic with a suite of environmental parameters to discern the factors underlying their variations. Our analysis revealed that calcification in foraminifera is associated with seawater density and depends on species habitat depth, whereas foraminifera bulk shell densities may serve as a seawater density proxy, regardless of species. We observe that their shell weights increased with habitat depth, enabling the living cells to adjust their overall density to match that of the surrounding liquid. This suggests that calcification in nonmotile organisms has a buoyancy regulatory function and will respond to the anthropogenically driven reductions in ocean density (oceanic rarefication), with potential consequences for the carbon cycle.
MCC, GE, DAS, GE Environmental Sciences
MCC, GE, DAS, GE Environmental Sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
