
Attenuation of seismic random noise is considered an important processing step to enhance the signal-to-noise ratio of seismic data. A new approach is proposed to attenuate random noise based on a deep-denoising autoencoder (DDAE). In this approach, the time-series seismic data are used as an input for the DDAE. The DDAE encodes the input seismic data to multiple levels of abstraction, and then it decodes those levels to reconstruct the seismic signal without noise. The DDAE is pretrained in a supervised way using synthetic data; following this, the pretrained model is used to denoise the field data set in an unsupervised scheme using a new customized loss function. We have assessed the proposed algorithm based on four synthetic data sets and two field examples, and we compare the results with several benchmark algorithms, such as f- x deconvolution ( f- x deconv) and the f- x singular spectrum analysis ( f- x SSA). As a result, our algorithm succeeds in attenuating the random noise in an effective manner.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 234 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
