Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digital Signal Proce...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Digital Signal Processing
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adaptive recursive algorithm with logarithmic transformation for nonlinear system identification in α -stable noise

Authors: Haiquan Zhao 0001; Lu Lu 0005; Zhengyou He; Badong Chen;

Adaptive recursive algorithm with logarithmic transformation for nonlinear system identification in α -stable noise

Abstract

Although the least mean pth power (LMP) and normalized LMP (NLMP) algorithms of adaptive Volterra filters outperform the conventional least mean square (LMS) algorithm in the presence of α-stable noise, they still exhibit slow convergence and high steady-state kernel error in nonlinear system identification. To overcome these limitations, an enhanced recursive least mean pth power algorithm with logarithmic transformation (RLogLMP) is proposed in this paper. The proposed algorithm is adjusted to minimize the new cost function with the p-norm logarithmic transformation of the error signal. The logarithmic transformation, which can diminish the significance of outliers under α-stable noise environment, increases the robustness of the proposed algorithm and reduces the steady-state kernel error. Moreover, the proposed method improves the convergence rate by the enhanced recursive scheme. Finally, simulation results demonstrate that the proposed algorithm is superior to the LMP, NLMP, normalized least mean absolute deviation (NLMAD), recursive least squares (RLS) and nonlinear iteratively reweighted least squares (NIRLS) algorithms in terms of convergence rate and steady-state kernel error. An enhanced recursive least mean pth power algorithm with logarithmic transformation is proposed.The new cost function with the p-norm logarithmic transformation of the error signal is presented.The convexity of the proposed cost function is demonstrated.The convergence performance of the proposed RLogLMP algorithm is analyzed.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!