
AbstractUncertain information is being taken into account in an increasing number of application fields. In the meantime, abduction has been proved a powerful tool for handling hypothetical reasoning and incomplete knowledge. Probabilistic logical models are a suitable framework to handle uncertain information, and in the last decade many probabilistic logical languages have been proposed, as well as inference and learning systems for them. In the realm of Abductive Logic Programming (ALP), a variety of proof procedures have been defined as well. In this paper, we consider a richer logic language, coping with probabilistic abduction with variables. In particular, we consider an ALP program enriched with integrity constraints à la IFF, possibly annotated with a probability value. We first present the overall abductive language and its semantics according to the Distribution Semantics. We then introduce a proof procedure, obtained by extending one previously presented, and prove its soundness and completeness.
FOS: Computer and information sciences, probabilistic IFF, integrity constraints, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, abduction, Logic programming, Reasoning under uncertainty in the context of artificial intelligence, distribution semantics
FOS: Computer and information sciences, probabilistic IFF, integrity constraints, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, abduction, Logic programming, Reasoning under uncertainty in the context of artificial intelligence, distribution semantics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
