
handle: 20.500.14243/451845
The growing prevalence of location-based devices has resulted in a signi!cant abundance of location data from various tracking vendors. Nevertheless, a noticeable de!cit exists regarding readily accessible, extensive, and publicly available datasets for research purposes, primarily due to privacy concerns and ownership constraints. There is a pressing need for expansive datasets to advance machine learning techniques in this domain. The absence of such resources currently represents a substantial hindrance to research progress in this !eld. Data augmentation is emerging as a popular technique to mitigate this issue in several domains. However, applying state-of-the-art techniques as-is proves challenging when dealing with trajectory data due to the intricate spatio-temporal dependencies inherent to such data. In this work, we propose a novel strategy for augmenting trajectory data that applies a geographical perturbation on trajectory points along a trajectory. Such a perturbation results in controlled changes in the raw trajectory and, consequently, causes changes in the trajectory feature space. We test our strategy in two trajectory datasets and show a performance improvement of approximately 20% when contrasted with the baseline. We believe this strategy will pave the way for a more comprehensive framework for trajectory data augmentation that can be used in !elds where few labeled trajectory data are available for training machine learning models.
Datavetenskap (datalogi), Data augmentation, Trajecrtories, Computer Sciences
Datavetenskap (datalogi), Data augmentation, Trajecrtories, Computer Sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
