
In this work we apply Thompson's scaling approach (of dimensions) to study the scalar field theories Φn. This method can be considered as a simple and alternative way to the renormalization group (RG) approach and when applied to the Φn Lagrangian is able to obtain the coupling constant behavior g(μ), namely the dependence of g on the energy scale μ. The calculations are evaluated just at [Formula: see text], where the dimension dc is similar to a kind of upper critical dimension of the problem, or in other words the dimension where the Φn theory becomes renormalizable, so that we obtain logarithmic behavior of the coupling g at dc. Due to the universal logharithmic behavior of the coupling g at dc for any value of n in the Φn theory, we are able to estimate a certain βn function given in a closed form, which is a novelty obtained by the present method.
Renormalization group methods applied to problems in quantum field theory, Scalar field theories, Thompson's scaling approach, \(\beta_n\) function, Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
Renormalization group methods applied to problems in quantum field theory, Scalar field theories, Thompson's scaling approach, \(\beta_n\) function, Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
