Downloads provided by UsageCounts
We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another way of counting the number of such objects. Counting geometric graphs is then equivalent to calculating the powers of a production matrix. Applying the technique of Riordan Arrays to these production matrices, we establish new formulas for the numbers of geometric graphs as well as combinatorial identities derived from the production matrices. Further, we obtain the characteristic polynomial and the eigenvectors of such production matrices.
Computational Geometry (cs.CG), FOS: Computer and information sciences, Exact enumeration problems, generating functions, characteristic polynomials, Riordan Arrays, Enumeration in graph theory, Riordan arrays, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta, Grafs, Graph polynomials, Production matrices, generating functions, FOS: Mathematics, Mathematics - Combinatorics, Teoria de, Grafs, Teoria de, :Matemàtiques i estadística::Matemàtica discreta [Àrees temàtiques de la UPC], Geometric graphs, production matrices, Graph theory, Generating functions, geometric graphs, Computer Science - Computational Geometry, Characteristic polynomials, Structural characterization of families of graphs, Combinatorics (math.CO), Anàlisi combinatòria
Computational Geometry (cs.CG), FOS: Computer and information sciences, Exact enumeration problems, generating functions, characteristic polynomials, Riordan Arrays, Enumeration in graph theory, Riordan arrays, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta, Grafs, Graph polynomials, Production matrices, generating functions, FOS: Mathematics, Mathematics - Combinatorics, Teoria de, Grafs, Teoria de, :Matemàtiques i estadística::Matemàtica discreta [Àrees temàtiques de la UPC], Geometric graphs, production matrices, Graph theory, Generating functions, geometric graphs, Computer Science - Computational Geometry, Characteristic polynomials, Structural characterization of families of graphs, Combinatorics (math.CO), Anàlisi combinatòria
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 62 | |
| downloads | 44 |

Views provided by UsageCounts
Downloads provided by UsageCounts