
Cloud computing in today's computing environment plays a vital role, by providing efficient and scalable computation based on pay per use model. To make computing more reliable and efficient, it must be efficient, and high resources utilized. To improve resource utilization and efficiency in cloud, task scheduling and resource allocation plays a critical role. Many researchers have proposed algorithms to maximize the throughput and resource utilization taking into consideration heterogeneous cloud environments. This work proposes an algorithm using DBSCAN (Density-based spatial clustering) for task scheduling to achieve high efficiency. The proposed DBScan-based task scheduling algorithm aims to improve user task quality of service and improve performance in terms of execution time, average start time and finish time. The experiment result shows proposed model outperforms existing ACO and PSO with 13% improvement in execution time, 49% improvement in average start time and average finish time. The experimental results are compared with existing ACO and PSO algorithms for task scheduling.
Density-based spatial clustering of applications with noise (DBSCAN), Virtual machine (VM), Electronic computers. Computer science, PSO (particle swarm optimization), Cloud computing, QA75.5-76.95, Ant colony optimization (ACO)
Density-based spatial clustering of applications with noise (DBSCAN), Virtual machine (VM), Electronic computers. Computer science, PSO (particle swarm optimization), Cloud computing, QA75.5-76.95, Ant colony optimization (ACO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
