Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fracture and Structu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fracture and Structural Integrity
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fracture and Structural Integrity
Article . 2024
Data sources: DOAJ
https://dx.doi.org/10.60692/re...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/hk...
Other literature type . 2024
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of Machine Learning in Fracture Analysis of Edge Crack Semi-Infinite Elastic Plate

تطبيق التعلم الآلي في تحليل الكسور للوح المرن شبه اللانهائي لشق الحافة
Authors: Saeed H. Moghtaderi; Alias Jedi; Ahmad Kamal Ariffin; P. Thamburaja;

Application of Machine Learning in Fracture Analysis of Edge Crack Semi-Infinite Elastic Plate

Abstract

This paper discusses the application of machine learning techniques, notably artificial neural networks (ANN), in the fracture analysis of semi-infinite elastic plates with edge cracks. The Stress Intensity Factor (SIF) model for a semi-infinite plate with a tip crack is employed in the study, and Finite Element Analysis (FEA) is performed via ABAQUS CAE to build a comprehensive dataset containing numerical simulations data. To improve accuracy and reliability, data preprocessing is implemented, and ANN as a valuable machine learning model is trained with various variables describing crack propagation, stress distribution, and plate structure as input parameters. The suggested method is compared to established fracture analysis methods, proving its accuracy in predicting crack behavior and stress distribution under a variety of loading circumstances. The model provides useful insights into the behavior of edge cracks in semi-infinite elastic plates, enhancing material engineering and structural mechanics. The study demonstrates the potential of combining FEA and machine learning to improve fracture analysis capabilities, and it discusses limitations and future research directions, encouraging the exploration of advanced machine learning techniques and broader fracture scenarios for future fracture mechanics innovation.

Keywords

Composite material, Fracture (geology), Artificial intelligence, Design and Application of Intelligent Monitoring Systems, Friction Welding, elastic plate, TA630-695, Structural engineering, finite element analysis, stress intensity factor, Fracture analysis, , Finite element method, Machine Learning, Cracks analysis, Engineering, TJ1-1570, Linear elastic analysis, Mechanical engineering and machinery, Materials Engineering in Industrial Applications, FEM, (SFEM), stress intensity factor (SIF), MCSC, Structural engineering (General), Fatigue and Fracture Mechanics, mode i fracture analysis, Computer science, Materials science, Enhanced Data Rates for GSM Evolution, Fracture, machine learning, Control and Systems Engineering, Mechanics of Materials, Physical Sciences, Intelligent Control System for Industrial Processes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Published in a Diamond OA journal
Related to Research communities