
Conflicts between taxiing aircraft are resolved by making the aircraft with lower priority wait, slow down, or change their path. Prevalent priority assignment is based on rules such as First Come First Serve. However, this is not viable as a priority assignment done by an air-traffic controller (ATC) based on multiple factors. Thus, a machine learning approach is proposed to mimic an ATC’s priority assignment. Firstly, the potential conflict scenarios between two aircraft from historical data, which are resolved, are detected and extracted. Then a Random Forest model is developed to learn ATC’s behaviors. The model mimics ATC’s behavior with an accuracy of 89% and can thus be an effective approach for priority assignment in path-planning and conflict resolution. Further analysis indicates that features such as unimpeded time difference, distance to destination and start, and speed are major considerations that affect the ATC’s decisions. Civil Aviation Authority of Singapore (CAAS) National Research Foundation (NRF) Submitted/Accepted version This research is supported by the National Research Foundation, Singapore, and the Civil Aviation Authority of Singapore, under the Aviation Transformation Programme.
Machine Learning, Conflict Resolution, :Computer science and engineering::Computing methodologies::Artificial intelligence [Engineering], Airport Surface Movement, :Computer science and engineering::Computing methodologies::Simulation and modeling [Engineering]
Machine Learning, Conflict Resolution, :Computer science and engineering::Computing methodologies::Artificial intelligence [Engineering], Airport Surface Movement, :Computer science and engineering::Computing methodologies::Simulation and modeling [Engineering]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
