
We propose a semi-supervised multichannel speech enhancement system based on a probabilistic model which assumes that both speech and noise follow the heavy-tailed multi-variate complex Cauchy distribution. As we advocate, this allows handling strong and adverse noisy conditions. Consequently, the model is parameterized by the source magnitude spectrograms and the source spatial scatter matrices. To deal with the non-additivity of scatter matrices, our first contribution is to perform the enhancement on a projected space. Then, our second contribution is to combine a latent variable model for speech, which is trained by following the variational autoencoder framework, with a low-rank model for the noise source. At test time, an iterative inference algorithm is applied, which produces estimated parameters to use for separation. The speech latent variables are estimated first from the noisy speech and then updated by a gradient descent method, while a majorization-equalization strategy is used to update both the noise and the spatial parameters of both sources. Our experimental results show that the Cauchy model outperforms the state-of-art methods. The standard deviation scores also reveal that the proposed method is more robust against non-stationary noise.
Nonnegative matrix factorization, multivariate complex Cauchy distribution, Multichannel speech enhancement, variational autoencoder, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
Nonnegative matrix factorization, multivariate complex Cauchy distribution, Multichannel speech enhancement, variational autoencoder, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
