Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
SIAM Journal on Scientific Computing
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Uniform \(\mathcal {H}\)-Matrix Compression with Applications to Boundary Integral Equations

Uniform \(\mathcal{H}\)-matrix compression with applications to boundary integral equations
Authors: Kobe Bruyninckx; Daan Huybrechs; Karl Meerbergen;

Uniform \(\mathcal {H}\)-Matrix Compression with Applications to Boundary Integral Equations

Abstract

Boundary integral equations lead to dense system matrices when discretized, yet they are data-sparse. Using the $\mathcal{H}$-matrix format, this sparsity is exploited to achieve $\mathcal{O}(N\log N)$ complexity for storage and multiplication by a vector. This is achieved purely algebraically, based on low-rank approximations of subblocks, and hence the format is also applicable to a wider range of problems. The $\mathcal{H}^2$-matrix format improves the complexity to $\mathcal{O}(N)$ by introducing a recursive structure onto subblocks on multiple levels. However, in many cases this comes with a large proportionality constant, making the $\mathcal{H}^2$-matrix format advantageous mostly for large problems. In this paper we investigate the usefulness of a matrix format that lies in between these two: Uniform $\mathcal{H}$-matrices. An algebraic compression algorithm is introduced to transform a regular $\mathcal{H}$-matrix into a uniform $\mathcal{H}$-matrix, which maintains the asymptotic complexity. Using examples of the BEM formulation of the Helmholtz equation, we show that this scheme lowers the storage requirement and execution time of the matrix-vector product without significantly impacting the construction time.

Related Organizations
Keywords

hierarchical matrices, FOS: Computer and information sciences, matrix compression, Numerical linear algebra, Numerical Analysis (math.NA), Numerical methods for integral equations, boundary element method, 35J05, 65F30, 65N38, FOS: Mathematics, boundary integral equations, Computer Science - Mathematical Software, Helmholtz equation, Mathematics - Numerical Analysis, Mathematical Software (cs.MS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green