Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Challenges and Issue...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Challenges and Issues of Modern Science
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DOAJ
Article . 2025
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Austenite Stability and Wear Resistance of High-Manganese Steels

Authors: Snizhnoi, Hennadii; Sazhnev, Volodymyr; Sheyko, Serhii; Shapurov, Olexandr; Hrechana, Anastasiia;

Austenite Stability and Wear Resistance of High-Manganese Steels

Abstract

Purpose. Classification of wear-resistant components used in metallurgical equipment by category and optimization of high-manganese steel selection. Design / Method / Approach. The study was conducted on steels produced in induction furnaces with water quenching at 1050 °C. Samples of 5 × 3 × 3 mm³ were subjected to slow plastic deformation by compression. The degree of deformation was determined by the ratio of the sample thickness before and after deformation. The magnetic state was evaluated by the magnetometric method using a Faraday balance. Findings. At 20–30% deformation, 110Mn8 formed 2.787 vol.% α′-martensite, 110Mn10 – 0.263 vol.%, 110Mn13 – 0.107 vol.%, and 110Mn18 – 0.006 vol.%. Steels 110Mn8 and 110Mn10 exhibit low austenite stability, while 110Mn13 and 110Mn18 are metastable. A classification of parts by operating conditions was proposed: I – especially critical purpose (110Mn13, 110Mn18), II – critical purpose (110Mn10), III – general purpose (110Mn8). Theoretical Implications. The study enhances understanding of the role of martensitic transformation in the wear resistance of high-manganese steels and clarifies the relationship between chemical composition and austenite stability. Practical Implications. The classification enables optimized steel selection for parts based on operating conditions, reducing material costs and improving equipment reliability. Originality / Value. This is the first study to propose a classification of metallurgical equipment parts by categories, considering austenite stability, facilitating rational material selection. Research Limitations / Future Research. Future research should explore the effects of additional alloying elements and compare them with other deformation types. Article Type. Empirical. PURL: https://purl.org/cims/4.286

Keywords

plastic deformation, аустеніт, мартенситне перетворення, зносостійкість, високомарганцева сталь, wear resistance, high-manganese steel, martensitic transformation, TK1-9971, Structural and Functional Materials, пластична деформація, Environmental sciences, GE1-350, Electrical engineering. Electronics. Nuclear engineering, austenite

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold