Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance Analysis of GNSS/INS/VO/Odometry Sensor Fusion Algorithms for Tracked Agricultural Vehicles

Authors: Eva Reitbauer; Christoph Schmied;

Performance Analysis of GNSS/INS/VO/Odometry Sensor Fusion Algorithms for Tracked Agricultural Vehicles

Abstract

In the last decade, high-accuracy GNSS has played an increasingly important role in the agricultural sector. However, when used as a stand-alone sensor for positioning, GNSS cannot meet the requirements of autonomous agricultural machinery. To ensure high availability, robustness and increased accuracy of position and attitude, new sensor fusion concepts tailored to agricultural applications must be developed. The paper presents two sensor fusion algorithms for tracked agricultural vehicles. The first one is an error-state cascaded integration which uses GNSS, Odometry, and Visual Odometry (VO), paired with a point cloud registration algorithm called Normal distributions Transform (NDT), as aiding sensors and the IMU as reference sensor. The second consists of two local error-state filters, one for GNSS/INS fusion and the other for fusing VO/NDT and Odometry, where the result of the local filters is combined in a snapshot fusing algorithm. To find out which integration architecture is best suited for tracked agricultural vehicles like compost turners, the filters are tested at a composting site and evaluated regarding their achievable real-time accuracy for position and attitude. The results show that both filters achieve sub-decimetre accuracy for the positioning solution, but the cascaded integration architecture is more robust against outliers.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!