Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UEF eRepository (Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Medical Informatics
Article . 2018 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Medical Informatics
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UEF eRepository
Article . 2018
Data sources: UEF eRepository
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-monitoring induced savings on type 2 diabetes patients’ travel and healthcare costs

Authors: Leminen, Aapeli; Tykkyläinen, Markku; Laatikainen, Tiina;

Self-monitoring induced savings on type 2 diabetes patients’ travel and healthcare costs

Abstract

Type 2 diabetes (T2DM) is a major health concern in most regions. In addition to direct healthcare costs, diabetes causes many indirect costs that are often ignored in economic analyses. Patients' travel and time costs associated with the follow-up of T2DM patients have not been previously calculated systematically over an entire healthcare district. The aim of the study was to develop a georeferenced cost model that could be used to measure healthcare accessibility and patient travel and time costs in a sparsely populated healthcare district in Finland. Additionally, the model was used to test whether savings in the total costs of follow-up of T2DM patients are achieved by increasing self-monitoring and implementing electronic feedback practices between healthcare staff and patients.Patient data for this study was obtained from the regional electronic patient database Mediatri. A georeferenced cost model of linear equations was developed with ESRI ArcGIS 10.3 software and ModelBuilder tool. The Model utilizes OD Cost Matrix method of network analysis to calculate optimal routes for primary-care follow-up visits.In the study region of North Karelia, the average annual total costs of T2DM follow-up screening of HbA1c (9070 patients) conforming to the national clinical guidelines are 280 EUR/297 USD per patient. Combined travel and time costs are 21 percent of the total costs. Implementing self-monitoring for a half of the follow-up still within the guidelines, the average annual total costs of HbA1c screening could be reduced by 57 percent from 280 EUR/297 USD to 121 EUR/129 USD per patient.Travel costs related to HbA1c screening of T2DM patients constitute a substantial cost item, the consideration of which in healthcare planning would enable the societal cost-efficiency of T2DM care to be improved. Even more savings in both travel costs and healthcare costs of T2DM can be achieved by utilizing more self-monitoring and electronic feedback practices. Additionally, the cost model composed in the study can be developed and expanded further to address other healthcare processes and patient groups.

Keywords

HbA1c screening, Male, Travel, Primary Health Care, Blood Glucose Self-Monitoring, self-monitoring, Health Care Costs, healthcare accessibility, Telemedicine, Diabetes Mellitus, Type 2, georeferenced cost model, electronic patient database, Humans, Female, network analysis, Finland

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Top 10%
Green
hybrid