Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith Research On...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Sensors Journal
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Microparticle Image Velocimetry Based on Light Field Imaging

Authors: Xianglei Song; Mengtao Gu; Lixia Cao; Zhiyong Tang; Chuanlong Xu;

A Microparticle Image Velocimetry Based on Light Field Imaging

Abstract

Accurate 3D flow characterization in a microchannel is becoming increasingly important for the design and development of microfluidic chips. In recent years, a light field camera that can simultaneously record the direction and position information of rays in a single photographic exposure has been developed and employed in the field of computer graphics. In this paper, a microparticle image velocimetry based on light field imaging (light field $\mu $ PIV) is proposed to reconstruct the 3D velocity field of a microscale flow. Both simulations and experiments are performed to verify the proposed method. The light field image of tracer particles and the point spread function (PSF) of a light field microscopic imaging system are numerically calculated based on the Abbe imaging principle. The 3D positions of the tracer particles in a flow field are then reconstructed by the Lucy–Richardson 3D deconvolution algorithm. Furthermore, a light field $\mu $ PIV system based on an assembled cage light field camera with a microscope is developed, and calibrations are performed to obtain the geometric parameters of the $\mu $ PIV system accurately. The simulation and experimental results demonstrate the feasibility of the proposed light field $\mu $ PIV. Compared with the synthetic refocusing reconstruction method, the Lucy–Richardson 3D deconvolution algorithm greatly improves the lateral and the axial resolutions of the flow field.

Related Organizations
Keywords

molecular and optical physics, Atomic, Mechanical engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Green