
handle: 11573/1743303
Hybrid Brain-Computer Interfaces (hBCI) integrate brain and muscle signals to enhance motor rehabilitation of stroke survivors, by closing the loop between the lesioned brain and the paretic limb. To date, little attention has been devoted to their potential efficacy in managing the maladaptive movement patterns that afflict post-stroke motor outcome (unwanted abnormal co-contrations, spasticity). This study proposes a comparison of Cortico-Muscular Coherence (CMC) patterns assessed in stroke patients before and after a 1-month rehabilitation intervention based on a hBCI-controlled Functional Electrical Stimulation (FES) treatment, which included a module to monitor non-physiological movement patterns. Results demonstrated the efficacy of this type of assistive technology for post-stroke rehabilitation, addressing patient-tailored interventions able to reduce the maladaptive mechanisms.
hBCI; CMC; FES; stroke
hBCI; CMC; FES; stroke
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
