Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://www.teses.usp...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.teses.usp.br/teses/...
Doctoral thesis
License: CC BY NC SA
Data sources: UnpayWall
https://doi.org/10.11606/d.104...
Doctoral thesis . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos

Authors: Hartmann, Marcelo;

Métodos de Monte Carlo Hamiltoniano na inferência Bayesiana não-paramétrica de valores extremos

Abstract

Neste trabalho propomos uma abordagem Bayesiana nao-parametrica para a modelagem de dados com comportamento extremo. Tratamos o parâmetro de locacao _ da distribuicao generalizada de valor extremo como uma funcao aleatoria e assumimos um processo Gaussiano para tal funcao (Rasmussem & Williams 2006). Esta situacao leva a intratabilidade analitica da distribuicao a posteriori de alta dimensao. Para lidar com este problema fazemos uso do metodo Hamiltoniano de Monte Carlo em variedade Riemanniana que permite a simulacao de valores da distribuicao a posteriori com forma complexa e estrutura de correlacao incomum (Calderhead & Girolami 2011). Alem disso, propomos um modelo de serie temporal autoregressivo de ordem p, assumindo a distribuicao generalizada de valor extremo para o ruido e determinamos a respectiva matriz de informacao de Fisher. No decorrer de todo o trabalho, estudamos a qualidade do algoritmo em suas variantes atraves de simulacoes computacionais e apresentamos varios exemplos com dados reais e simulados.

Keywords

Bayesian nonparametrics, Método de Monte Carlo, Inferência bayesiana, Generalized extreme values distribution, Distribuição valor extremo, Latent Gaussian process, Processo Gaussiano latente, Estatística, CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold