Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ODA Open Digital Arc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ODA Open Digital Archive
Conference object . 2020
https://doi.org/10.23919/ccc50...
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An ELM-based Deep SDAE Ensemble for Inter-Subject Cognitive Workload Estimation with Physiological Signals

Authors: Zheng, Zhanpeng; Yin, Zhong; Zhang, Jianhua;

An ELM-based Deep SDAE Ensemble for Inter-Subject Cognitive Workload Estimation with Physiological Signals

Abstract

Evaluating operator cognitive workload (CW) levels in human-machine systems based on neurophysiological signals is becoming the basis to prevent serious accidents due to abnormal state of human operators. This study proposes an inter-subject CW classifier, extreme learning machine (ELM)-based deep stacked denoising autoencoder ensemble (ED-SDAE), to adapt the variations of the electroencephalogram (EEG) feature distributions across different subjects. The ED-SDAE consists of two cascade-connected modules, which are termed as high level personalized feature abstractions and abstraction fusion. The combination of SDAE and locality preserving projection (LPP) technique is regarded as base learner to obtain ensemble members for training meta-classifier by stacking-based approach. The ELM model with Q-statistics diversity measurement is acted as meta-classifier to fuse above inputs to improve classification performance. The feasibility of the SD-SDAE is tested by two EEG databases. The multi-class classification rate achieves 0.6353 and 0.6747 for T1 and T2 respectively, and significantly outperforms several shallow and deep CW estimators. By computing the main time complexity, the computational workload of the ED-SDAE is also acceptable for high-dimensional EEG features.

Country
Norway
Keywords

Cognitive workloads, Ensemble learning, Stacked denoising autoencoders, Extreme learning machines, Electroencephalograms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green