Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Conference object . 2025
Data sources: MPG.PuRe
https://doi.org/10.1137/1.9781...
Part of book or chapter of book . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Near-Optimal-Time Quantum Algorithms for Approximate Pattern Matching

Authors: Kociumaka, T.; Nogler, J.; Wellnitz, P. ; https://orcid.org/0000-0002-6482-8478;

Near-Optimal-Time Quantum Algorithms for Approximate Pattern Matching

Abstract

Approximate Pattern Matching is among the most fundamental string-processing tasks. Given a text $T$ of length $n$, a pattern $P$ of length $m$, and a threshold $k$, the task is to identify the fragments of $T$ that are at distance at most $k$ to $P$. We consider the two most common distances: Hamming distance (the number of character substitutions) in Pattern Matching with Mismatches and edit distance (the minimum number of character insertions, deletions, and substitutions) in Pattern Matching with Edits. We revisit the complexity of these two problems in the quantum setting. Our recent work [STOC'24] shows that $\hat{O}(\sqrt{nk})$ quantum queries are sufficient to solve (the decision version of) Pattern Matching with Edits. However, the quantum time complexity of the underlying solution does not provide any improvement over classical computation. On the other hand, the state-of-the-art algorithm for Pattern Matching with Mismatches [Jin and Nogler; SODA'23] achieves query complexity $\hat{O}(\sqrt{nk^{3/2}})$ and time complexity $\tilde{O}(\sqrt{nk^2})$, falling short of an unconditional lower bound of $Ω(\sqrt{nk})$ queries. In this work, we present quantum algorithms with a time complexity of $\tilde{O}(\sqrt{nk}+\sqrt{n/m}\cdot k^2)$ for Pattern Matching with Mismatches and $\hat{O}(\sqrt{nk}+\sqrt{n/m}\cdot k^{3.5})$ for Pattern Matching with Edits; both solutions use $\hat{O}(\sqrt{nk})$ queries. The running times are near-optimal for $k\ll m^{1/3}$ and $k\ll m^{1/6}$, respectively, and offer advantage over classical algorithms for $k\ll (mn)^{1/4}$ and $k\ll (mn)^{1/7}$, respectively. Our solutions can also report the starting positions of approximate occurrences of $P$ in $T$ (represented as collections of arithmetic progressions); in this case, the unconditional lower bound and the complexities of our algorithms increase by a $Θ(\sqrt{n/m})$ factor.

69 pages, 2 figures

Keywords

FOS: Computer and information sciences, Quantum Physics, Computer Science - Data Structures and Algorithms, FOS: Physical sciences, Data Structures and Algorithms (cs.DS), Quantum Physics (quant-ph)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green