Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Forensics and Security
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid Analog-Digital Precoder Design for Securing Cognitive Millimeter Wave Networks

Authors: Zhengmin Kong; Jing Song; Chao Wang; Hongyang Chen; Lajos Hanzo;

Hybrid Analog-Digital Precoder Design for Securing Cognitive Millimeter Wave Networks

Abstract

Millimeter wave (mmWave) communications and cognitive radio technologies constitute key technologies of improving the spectral efficiency of communications. Hence, we conceive a hybrid secure precoder for enhancing the physical layer security of a cognitive mmWave wiretap channel, where a secondary transmitter broadcasts confidential information signals to multiple secondary users under the interference temperature constraint of the primary user (PU). The optimization problem is formulated as jointly optimizing the analog and digital precoder for maximizing the minimum secrecy rate of all the secondary users under practical constraints. In particular, our design satisfies the constraint on the maximum interference power received by multiple PUs, as well as the secondary users’ minimum quality-of-service (Qos), and the unit-modulus constraint on the analog precoder. Due to the non-convexity of the resultant objective function and owing to the coupling between the analog and digital precoder, the optimization problem formulated is nonconvex and nonlinear, hence it is very challenging to solve directly. Hence, we first transform it into a tractable form, and develop a penalty dual decomposition (PDD) based iterative algorithm to locate its Karush-Kuhn-Tucker (KKT) solution. Finally, we generalize the proposed PDD algorithm to a secure hybrid precoder design relying on practical finite-resolution phase shifters and show that the proposed PDD algorithm can be straightforwardly adapted to handle the scenario, where each PU is equipped with multiple antennas and the CSI of multiple eavesdroppers (Eves) is imperfectly known. Our simulation results validate the efficiency of the proposed iterative algorithm.

Related Organizations
Keywords

621, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
bronze