Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Physicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Physics
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SU‐E‐T‐537: Photon Beam Modeling and Verification of Collapsed Cone Convolution Algorithm for Dose Calculation in a Radiation Treatment Planning System

Authors: J, Jung; W, Cho; J, Lee; D, Kim; M, Kim; T, Suh;

SU‐E‐T‐537: Photon Beam Modeling and Verification of Collapsed Cone Convolution Algorithm for Dose Calculation in a Radiation Treatment Planning System

Abstract

Purpose: The aim of this study is to evaluate the accuracy the collapsed cone convolution (CCC) algorithm for dose calculation in a radiation treatment planning system (TPS). Methods: We modeled various photon beams for various setup conditions in a radiation treatment planning system (CorePLANTM, Seoul C&J, Korea). The beam models were generated at various set‐up conditions such as open beam or wedged beam, 6 MV or 15 MV beam and field sizes from 4×4 cm2 to 40 × 40 cm2. Each beam model was optimized by spectrum modeling from measured percent depth dose (PDD) data, dose profile modeling from a measured profile at a specific depth (10 cm) data. Dose calculation was performed using conventional CCC algorithm. All measured data were acquired from a Clinac 21EX (Varian Medical System, Palo Alto, CA, USA) linear accelerator with the setting of SSD = 100 cm. All calculated PDD and dose profiles at various depths from generated beam models were compared to the measured data. Results: Calculated dose data from each beam model showed good agreements within 2% of difference to the measured PDD and within 3% dose profiles at various depths. Some regions such as penumbra region at 20 × 20 cm2 field size and horn region at wedge field showed dose discrepancies over 3%. The results of PDD at all situations showed well agreement with measured data under the 10×10 cm2 field size. For wedged cases, however, under the 5 cm depths, some inconsistency at penumbra region were appeared. Conclusions: In this study, we verified the accuracy of CCC algorithm in the TPS. Calculated results by our implemented algorithm was well satisfied with measured dose at small field size (〈20 7 times; 20 cm2). Our next study will perform to compensate theses inconsistencies.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!