Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Sele...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multimodal Feature-Guided Pretraining for RGB-T Perception

Authors: Junlin Ouyang; Pengcheng Jin; Qingwang Wang;

Multimodal Feature-Guided Pretraining for RGB-T Perception

Abstract

Wide-range multiscale object detection for multispectral scene perception from a drone perspective is challenging. Previous RGB-T perception methods directly use backbone pretrained on RGB for thermal infrared feature extraction, leading to unexpected domain shift. We propose a novel multimodal feature-guided masked reconstruction pretraining method, named M2FP, aimed at learning transferable representations for drone-based RGB-T environmental perception tasks without domain bias. This article includes two key innovations as follows. 1) We design a cross-modal feature interaction module in M2FP, which encourages modality-specific backbones to actively learn cross-modal feature representations and avoid modality bias issues. 2) We design a global-aware feature interaction and fusion module suitable for various downstream tasks, which enhances the model's environmental perception from a global perspective in wide-range drone-based scenes. We fine-tune M2FP on the drone-based object detection dataset (DroneVehicle) and semantic segmentation dataset (Kust4K). On these two tasks, compared to the second-best methods, M2FP achieves state-of-the-art performance, with an improvement of 1.8% in mean average precision and 0.9% in mean intersection over union, respectively.

Related Organizations
Keywords

Ocean engineering, QC801-809, Masked autoencoder, Geophysics. Cosmic physics, multimodal, object detection, TC1501-1800, semantic segmentation, unmanned aerial vehicle (UAV) remote sensing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold