Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Resources Mana...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Resources Management
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff Modelling

Authors: Danandeh Mehr, Ali; Nourani, Vahid;

Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff Modelling

Abstract

Genetic programming (GP) is recognized as a robust machine learning method for rainfall-runoff modelling. However, it may produce lagged forecasts if autocorrelation feature of runoff series is not taken carefully into account. To enhance timing accuracy of GP-based rainfall-runoff models, the paper proposes a new rainfall-runoff model that integrates season algorithm (SA) with multigene-GP (MGGP). The proposed SA-MGGP model was trained and validated for single- and two- and three-day ahead streamflow forecasts at Haldizen Catchment, Trabzon, Turkey. Timing and prediction accuracy of the proposed model were assessed in terms of different efficiency criteria. In addition, the efficiency results were compared to those of monolithic GP, MGGP, and SA-GP forecasting models developed in the present study as the benchmarks. The outcomes indicated that SA augments timing accuracy of GP-based models in the range 250% to 500%. It is also found that MGGP may identify underlying structure of the rainfall-runoff process slightly better than monolithic GP at the study catchment.

Keywords

Rainfall-runoff modelling, Mevsim algoritması, Gecikmeli tahmin, Yağış akışının modellenmesi, Multigene genetic programming, Season algorithm, Multigen genetik programlama, Lagged prediction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!