
arXiv: 2411.06944
Counting logics with a bounded number of variables form one of the central concepts in descriptive complexity theory. Although they restrict the number of variables that a formula can contain, the variables can be nested within scopes of quantified occurrences of themselves. In other words, the variables can be requantified. We study the fragments obtained from counting logics by restricting requantification for some but not necessarily all the variables. Similar to the logics without limitation on requantification, we develop tools to investigate the restricted variants. Specifically, we introduce a bijective pebble game in which certain pebbles can only be placed once and for all, and a corresponding two-parametric family of Weisfeiler-Leman algorithms. We show close correspondences between the three concepts. By using a suitable cops-and-robber game and adaptations of the Cai-Fürer-Immerman construction, we completely clarify the relative expressive power of the new logics. We show that the restriction of requantification has beneficial algorithmic implications in terms of graph identification. Indeed, we argue that with regard to space complexity, non-requantifiable variables only incur an additive polynomial factor when testing for equivalence. In contrast, for all we know, requantifiable variables incur a multiplicative linear factor. Finally, we observe that graphs of bounded tree-depth and 3-connected planar graphs can be identified using no, respectively, only a very limited number of requantifiable variables.
Weisfeiler-Leman algorithm, FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Computer Science - Computational Complexity, Finite variable counting logics, Computational Complexity (cs.CC), 004, Requantification, Logic in Computer Science (cs.LO), ddc: ddc:004
Weisfeiler-Leman algorithm, FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Computer Science - Computational Complexity, Finite variable counting logics, Computational Complexity (cs.CC), 004, Requantification, Logic in Computer Science (cs.LO), ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
