Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computational and St...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computational and Structural Biotechnology Journal
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Overcoming the cognition-reality gap in robot-to-human handovers with anisotropic variable force guidance

Authors: Chaolong Qin; Aiguo Song; Huijun Li; Lifeng Zhu; Xiaorui Zhang; Jianzhi Wang;

Overcoming the cognition-reality gap in robot-to-human handovers with anisotropic variable force guidance

Abstract

Object handover is a fundamental task for collaborative robots, particularly service robots. In in-home assistance scenarios, individuals often face constraints due to their posture and declining physical functions, necessitating high demands on robots for flexible real-time control and intuitive interactions. During robot-to-human handovers, individuals are limited to making perceptual judgements based on the appearance of the object and the consistent behaviour of the robot. This hinders their comprehensive perception and may lead to unexpected dangerous behaviour. Various handover trajectories pose challenges to predictive robot control and motion coordination. Many studies have shown that force guidance can provide adequate information to the receivers. However, force modulation with intention judgements based on velocity, acceleration, or jerk may impede the intended motion and require additional effort. In this paper, starting from a human-to-human handover study, an anisotropic variable force-guided robot-to-human handover control method is proposed to overcome the cognition-reality gap. The retraction motion was decoupled based on a fitted motion plane and a task-related linear trajectory, which served as a reference for overshoot suppression and impedance force modulation. The experimental results and user surveys show that the anisotropic variable impedance force suppresses overshooting without impeding the intended motions, giving the receiver sufficient time for behavioural adjustments and assisting them in completing a safe and efficient handover in a preferred manner.

Related Organizations
Keywords

Object handover, Service robot, Anisotropic variable force guidance, Home assistance, TP248.13-248.65, Biotechnology, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold