
arXiv: cs/0407038
We survey existing approaches to the formal verification of statecharts using model checking. Although the semantics and subset of statecharts used in each approach varies considerably, along with the model checkers and their specification languages, most approaches rely on translating the hierarchical structure into the flat representation of the input language of the model checker. This makes model checking difficult to scale to industrial models, as the state space grows exponentially with flattening. We look at current approaches to model checking hierarchical structures and find that their semantics is significantly different from statecharts. We propose to address the problem of state space explosion using a combination of techniques, which are proposed as directions for further research.
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, D.2.4 Software/Program Verification
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, D.2.4 Software/Program Verification
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
