
In this paper, a novel mixed integer non‐linear programming model for single component refrigerant design is presented. At the heart of the approach is a new formulation for structural feasibility that allows multiple bonds, connectivity and isomers. The strategy defines a set of structural groups (consisting of atoms), subsets of which are combined to form refrigerant molecules. Molecules formed this way must obey structural and stability constraints. The design objective is to build a refrigerant molecule that has desired physical properties and performance characteristics. These attributes are formulated as mathematical programming constraints and performance objectives which involve both continuous and integer variables. With the current renewed interest in the environment, the suggested approach is applied to refrigerant design with an environmental constraint. The results indicate the viability and the flexibility of the approach.
Chemistry, Applications of mathematical programming, Mixed integer programming, Nonlinear programming, structural feasibility, computer aided molecular design, single component refrigerant design
Chemistry, Applications of mathematical programming, Mixed integer programming, Nonlinear programming, structural feasibility, computer aided molecular design, single component refrigerant design
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
