
arXiv: 2401.03676
Educators are increasingly concerned about the usage of Large Language Models (LLMs) such as ChatGPT in programming education, particularly regarding the potential exploitation of imperfections in Artificial Intelligence Generated Content (AIGC) Detectors for academic misconduct. In this paper, we present an empirical study where the LLM is examined for its attempts to bypass detection by AIGC Detectors. This is achieved by generating code in response to a given question using different variants. We collected a dataset comprising 5,069 samples, with each sample consisting of a textual description of a coding problem and its corresponding human-written Python solution codes. These samples were obtained from various sources, including 80 from Quescol, 3,264 from Kaggle, and 1,725 from LeetCode. From the dataset, we created 13 sets of code problem variant prompts, which were used to instruct ChatGPT to generate the outputs. Subsequently, we assessed the performance of five AIGC detectors. Our results demonstrate that existing AIGC Detectors perform poorly in distinguishing between human-written code and AI-generated code.
Comment: 11 pages, paper accepted at 46th International Conference on Software Engineering, Software Engineering Education and Training Track (ICSE-SEET 2024)
Computer Science - Software Engineering, Artificial Intelligence and Robotics, Computer Science - Artificial Intelligence, Software Engineering Education, Software Engineering, AI-Generated Code Detection, AI-Generated Code, 004
Computer Science - Software Engineering, Artificial Intelligence and Robotics, Computer Science - Artificial Intelligence, Software Engineering Education, Software Engineering, AI-Generated Code Detection, AI-Generated Code, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
