
Sharing source and target side vocabularies and word embeddings has been a popular practice in neural machine translation (briefly, NMT) for similar languages (e.g., English to French or German translation). The success of such wordlevel sharing motivates us to move one step further: we consider model-level sharing and tie the whole parts of the encoder and decoder of an NMT model. We share the encoder and decoder of Transformer (Vaswani et al. 2017), the state-of-the-art NMT model, and obtain a compact model named Tied Transformer. Experimental results demonstrate that such a simple method works well for both similar and dissimilar language pairs. We empirically verify our framework for both supervised NMT and unsupervised NMT: we achieve a 35.52 BLEU score on IWSLT 2014 German to English translation, 28.98/29.89 BLEU scores on WMT 2014 English to German translation without/with monolingual data, and a 22.05 BLEU score on WMT 2016 unsupervised German to English translation.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
