Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Журнал Белорусского ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Site selection for solar photovoltaic system installation using analytical hierarchy process model in Azerbaijan

Authors: Nijat Sohrab Imamverdiyev;

Site selection for solar photovoltaic system installation using analytical hierarchy process model in Azerbaijan

Abstract

The most suitable sites for solar photovoltaic power installations are determined through a comprehensive assessment of the meteorological, economic and environmental criteria of the energy potential areas. The basic criteria for location selection are evaluated using an analytical hierarchy process method based on multi-criteria decision-making technique for large-scale solar photovoltaic projects. The analytical hierarchy process model is also applied to evaluate areas of high solar potential and factors that are primary criteria for determinate the site suitability index modelling. This method considers various conditions, such as production and technological considerations, which aim to maximise the short-term profit from the project and the efficiency of power generation. In the study, a consistency ratio of suitable localities was determined and proper alternatives for the construction of photovoltaic installations were evaluated. In addition to local meteorology and related satellite measurement data, the country’s radiation values also were compared by converting a digital elevation model data using the tool «Area solar radiation» in GIS. As a result of calculating the site suitability index with the ArcGIS weighted overlay tool, it was concluded that 1.17 % (1016.8 km2) of the country are the most suitable sites for the installation of solar PV systems. These areas mainly include Khizi, Gobustan, Hajigabul, Beylagan, Sharur, Babek and Jeyranchol zones. The total number of locations identified accross the country, classified into 3 categories according to their level of suitability, includes 40 sites. Eight of these high suitability sites, all in Nakhchivan Autonomous Republic, contain 11 % (109.2 km2) of the total potential area. The remaining 32 sites, corresponding to areas with medium and low energy potential, cover 28 % (284.6 km2) and 61 % (623 km2), respectively. When these areas are completely covered with PV panels, it will be possible to fully supply the energy demand of the country with solar energy.

Related Organizations
Keywords

solar photovoltaic system, Geography (General), QE1-996.5, renewable energy resources, gis model, solar energy, Geology, ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Общие и комплексные проблемы естественных и точных наук, ahp model, ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::География, ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Геодезия. Картография, multi-criteria decision-making, G1-922

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold