Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Artificial Intelligence in Medicine
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A self-supervised algorithm to detect signs of social isolation in the elderly from daily activity sequences

Authors: Prenkaj, Bardh; Aragona, Dario; Flaborea, Alessandro; Galasso, Fabio; Gravina, Saverio; Podo, Luca; Reda, Emilia; +1 Authors

A self-supervised algorithm to detect signs of social isolation in the elderly from daily activity sequences

Abstract

Considering the increasing aging of the population, multi-device monitoring of the activities of daily living (ADL) of older people becomes crucial to support independent living and early detection of symptoms of mental illnesses, such as depression and Alzheimer's disease. Anomalies can anticipate the diagnosis of these pathologies in the patient's normal behavior, such as reduced hygiene, changes in sleep habits, and fewer social interactions. These abnormalities are often subtle and hard to detect. Especially using non-intrusive monitoring devices might cause anomaly detectors to generate false alarms or ignore relevant clues. This limitation may hinder their usage by caregivers. Furthermore, the notion of abnormality here is context and patient-dependent, thus requiring untrained approaches. To reduce these problems, we propose a self-supervised model for multi-sensor time series signals based on Hyperbolic uncertainty for Anomaly Detection, which we dub HypAD. HypAD estimates uncertainty end-to-end, thanks to hyperbolic neural networks, and integrates it into the "classic" notion of reconstruction loss in anomaly detection. Based on hyperbolic uncertainty, HypAD introduces the principle of a detectable anomaly. HypAD assesses whether it is sure about the input signal and fails to reconstruct it because it is anomalous or whether the high reconstruction loss is due to the model uncertainty, e.g., a complex but regular signal (cf. this parallels the residual model error upon training). The proposed solution has been incorporated into an end-to-end ADL monitoring system for elderly patients in retirement homes, developed within a funded project leveraging an interdisciplinary consortium of computer scientists, engineers, and geriatricians. Healthcare professionals were involved in the design and verification process to foster trust in the system. In addition, the system has been equipped with explainability features.

Related Organizations
Keywords

anomaly detection; adl; elderly social isolation; hypernn; hyperbolic uncertainty, Aging, Social Isolation, Activities of Daily Living, Humans, Independent Living, Algorithms, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green