Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Software Engineering
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large Language Models-Aided Program Debloating

Authors: Bo Lin; Shangwen Wang; Yihao Qin; Liqian Chen; Xiaoguang Mao;

Large Language Models-Aided Program Debloating

Abstract

As software grows in complexity to accommodate diverse features and platforms, software bloating has emerged as a significant challenge, adversely affecting performance and security. However, existing approaches inadequately address the dual objectives of debloating: maintaining functionality by preserving essential features and enhancing security by reducing security issues. Specifically, current software debloating techniques often rely on input-based analysis, using user inputs as proxies for the specifications of desired features. However, these approaches frequently overfit provided inputs, leading to functionality loss and potential security vulnerabilities. To address these limitations, we propose LEADER, a program debloating framework enhanced by Large Language Models (LLMs), which leverages their semantic understanding, generative capabilities, and decision-making strengths. LEADER mainly consists of two modules: (1) a documentation-guided test augmentation module designed to preserve functionality, which leverages LLMs to comprehend program documentation and generates sufficient tests to cover the desired features comprehensively, and (2) a multi-advisor-aided program debloating module that employs a neuro-symbolic pipeline to ensure that the security of the software can be perceived during debloating. This module combines debloating and security advisors for analysis and employs an LLM as a decision-maker to eliminate undesired code securely. Extensive evaluations on widely used benchmarks demonstrate the efficacy of LEADER. These results demonstrate that LEADER surpasses the state-of-the-art tool CovA in functionality and security. These results underscore the potential of LEADER to set a new standard in program debloating by effectively balancing functionality and security.

Related Organizations
Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green