
This paper proposed a chaotic genetic algorithm (CGA) to solve the mixed integer programming problem (MIPP). The basic idea of this algorithm is to overcome the deficiency of genetic algorithm (GA) by introducing chaotic disturbances into the genetic search process. Two typical MIPP problems are used to evaluate the performances of the proposed CGA. Experimental results show that performances of the algorithm have been improved by the chaotic disturbances, such as, search ability, precision, stability and convergence speed or calculation efficiency. The proposed CGA algorithm is suitable for solving complicated practical MIPP problem.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
