Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Cybernetics
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Slice-Based Online Convolutional Dictionary Learning

Authors: Yijie Zeng; Jichao Chen; Guang-Bin Huang;

Slice-Based Online Convolutional Dictionary Learning

Abstract

Convolutional dictionary learning (CDL) aims to learn a structured and shift-invariant dictionary to decompose signals into sparse representations. While yielding superior results compared to traditional sparse coding methods on various signal and image processing tasks, most CDL methods have difficulties handling large data, because they have to process all images in the dataset in a single pass. Therefore, recent research has focused on online CDL (OCDL) which updates the dictionary with sequentially incoming signals. In this article, a novel OCDL algorithm is proposed based on a local, slice-based representation of sparse codes. Such representation has been found useful in batch CDL problems, where the convolutional sparse coding and dictionary learning problem could be handled in a local way similar to traditional sparse coding problems, but it has never been explored under online scenarios before. We show, in this article, that the proposed algorithm is a natural extension of the traditional patch-based online dictionary learning algorithm, and the dictionary is updated in a similar memory efficient way too. On the other hand, it can be viewed as an improvement of existing second-order OCDL algorithms. Theoretical analysis shows that our algorithm converges and has lower time complexity than existing counterpart that yields exactly the same output. Extensive experiments are performed on various benchmarking datasets, which show that our algorithm outperforms state-of-the-art batch and OCDL algorithms in terms of reconstruction objectives.

Related Organizations
Keywords

Convolutional Sparse Coding, :Electrical and electronic engineering [Engineering], Dictionary Learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green