Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Non-Newto...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Non-Newtonian Fluid Mechanics
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flow visualisation of polymer melts in abrupt contraction extrusion dies: quantification of melt recirculation and flow patterns

Flow visualisation of polymer melts in abrupt contraction extrusion dies: Quantification of melt recirculation and flow patterns
Authors: Martyn, M. T.; Nakason, C.; Coates, P. D.;

Flow visualisation of polymer melts in abrupt contraction extrusion dies: quantification of melt recirculation and flow patterns

Abstract

This paper is the first part of a series of three in which we present experimental and analytical data covering the development of entry profiles, normal and shear stress fields, velocity fields and the in-process extensional viscosity measurement of branched and linear polyolefins. Here, we report accurate in-process measurements of the natural flow profiles of selected branched and linear polyolefins obtained from screw-driven extrusion flows through an abrupt contraction geometry. Recirculation areas, vortex centres and detachment lengths were quantified and their dependence on flow rate and process temperature studied. Significant recirculation areas were observed for the branched melts. Both the size and the development of these features were dependent on flow rate and temperature. Recirculation areas of the linear polymers were less prominent and independent of flow conditions. Correlation has been observed between rheological characteristics of the low density polyethylenes and their entry behaviour.

Related Organizations
Keywords

Visualization algorithms applied to problems in fluid mechanics, Statistical mechanics of polymers, Viscoelastic fluids, Experimental work for problems pertaining to fluid mechanics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!