
Raptor codes are a class of rateless codes originally designed for binary erasure channels. This paper presents a compact set of mathematical expressions for iterative soft decoding of raptor codes. In addition, an early termination scheme is employed, and it is embedded in a single algorithm with the formula. In the proposed algorithm, the performance is enhanced by adopting iterative decoding, both in each inner and outer code and in the concatenated code itself between the inner and outer codes. At the same time, the complexity is reduced by applying an efficient early termination scheme. Simulation results show that our proposed method can achieve better performance with reduced decoding complexity compared to the conventional schemes.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
