Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FastFixer: An Efficient and Effective Approach for Repairing Programming Assignments

Authors: Fang Liu; Zhenwei Liu; Qianhui Zhao; Jing Jiang; Li Zhang; Zian Sun; Ge Li; +2 Authors

FastFixer: An Efficient and Effective Approach for Repairing Programming Assignments

Abstract

Providing personalized and timely feedback for student's programming assignments is useful for programming education. Automated program repair (APR) techniques have been used to fix the bugs in programming assignments, where the Large Language Models (LLMs) based approaches have shown promising results. Given the growing complexity of identifying and fixing bugs in advanced programming assignments, current fine-tuning strategies for APR are inadequate in guiding the LLM to identify bugs and make accurate edits during the generative repair process. Furthermore, the autoregressive decoding approach employed by the LLM could potentially impede the efficiency of the repair, thereby hindering the ability to provide timely feedback. To tackle these challenges, we propose FastFixer, an efficient and effective approach for programming assignment repair. To assist the LLM in accurately identifying and repairing bugs, we first propose a novel repair-oriented fine-tuning strategy, aiming to enhance the LLM's attention towards learning how to generate the necessary patch and its associated context. Furthermore, to speed up the patch generation, we propose an inference acceleration approach that is specifically tailored for the program repair task. The evaluation results demonstrate that FastFixer obtains an overall improvement of 20.46% in assignment fixing when compared to the state-of-the-art baseline. Considering the repair efficiency, FastFixer achieves a remarkable inference speedup of 16.67 times compared to the autoregressive decoding algorithm.

Comment: Accepted by the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE 2024)

Related Organizations
Keywords

Computer Science - Computers and Society, Computer Science - Software Engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green