
arXiv: 2501.17701
We initiate the systematic study of decision-theoretic metrics in the design and analysis of algorithms with machine-learned predictions. We introduce approaches based on both deterministic measures such as distance-based evaluation, that help us quantify how close the algorithm is to an ideal solution, and stochastic measures that balance the trade-off between the algorithm's performance and the risk associated with the imperfect oracle. These approaches allow us to quantify the algorithm's performance across the full spectrum of the prediction error, and thus choose the best algorithm within an entire class of otherwise incomparable ones. We apply our framework to three well-known problems from online decision making, namely ski-rental, one-max search, and contract scheduling.
Machine Learning, FOS: Computer and information sciences, Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Machine Learning (cs.LG)
Machine Learning, FOS: Computer and information sciences, Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
